Geophysics and neural networks: learning from computer vision
نویسندگان
چکیده
منابع مشابه
Neural Networks and Neuroscience-Inspired Computer Vision
Brains are, at a fundamental level, biological computing machines. They transform a torrent of complex and ambiguous sensory information into coherent thought and action, allowing an organism to perceive and model its environment, synthesize and make decisions from disparate streams of information, and adapt to a changing environment. Against this backdrop, it is perhaps not surprising that com...
متن کاملSelf-Learning Fuzzy Neural Networks and Computer Vision for Control of Pulsed GTAW
The objective of this research is to apply intelligent control methodology to improve weld quality. Based on fuzzy logic and artificial neural network theory, a self-learning fuzzy and neural network control scheme has been developed for real-time control of pulsed gas tungsten arc welding (GTAW). Using an industrial TV camera as the sensor, the weld face width of the weld pool, i.e., the feedb...
متن کاملComputer-aided learning in artificial neural networks
This paper describes the development and evaluation of a computer-aided learning (CAL) package for a graduate course in artificial neural networks (ANNs). The package has been evaluated over a period of two academic years, both as an educational supplement to a conventional lecture course and as a completely self-sufficient, remotely taught course. The course is accessed via the World Wide Web ...
متن کاملComputer assisted instruction during quarantine and computer vision syndrome
Computer vision syndrome (CVS) is a set of visual, ocular, and musculoskeletal symptoms that result from long-term computer use. These symptoms include eyestrain, dry eyes, burning, pain, redness, blurred vision, etc, which increase with the duration of computer use. Currently, with the closure of schools and universities due to the continued COVID19 pandemic many universities have taken the pr...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ASEG Extended Abstracts
سال: 2019
ISSN: 2202-0586
DOI: 10.1080/22020586.2019.12073110